

MRI-T1画像を用いたアルツハイマー型認知症の進行予測

石田学 株式会社ERISA

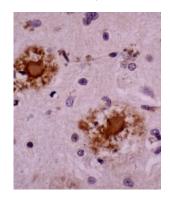
認知症

一旦獲得した知的機能が脳の障害によって持続的に低下し、その為に日 常生活に支障をきたすようになった状態

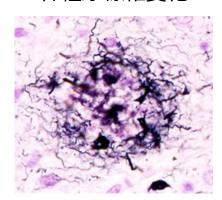
認知症の約半数はアルツハイマー病 物忘れで始まり,理解力や判断力が徐々に低下する

脳の萎縮

老人斑



神経原線維変化

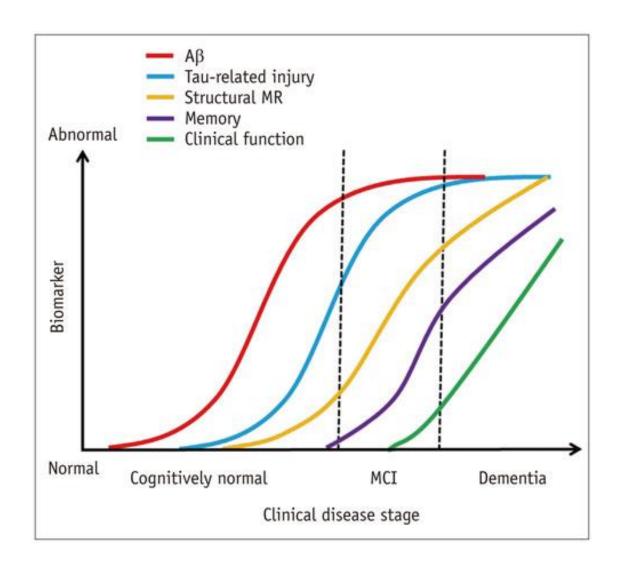


アルツハイマー型認知症の診断

アルツハイマー型認知症の確定診断には複数の検査が必要

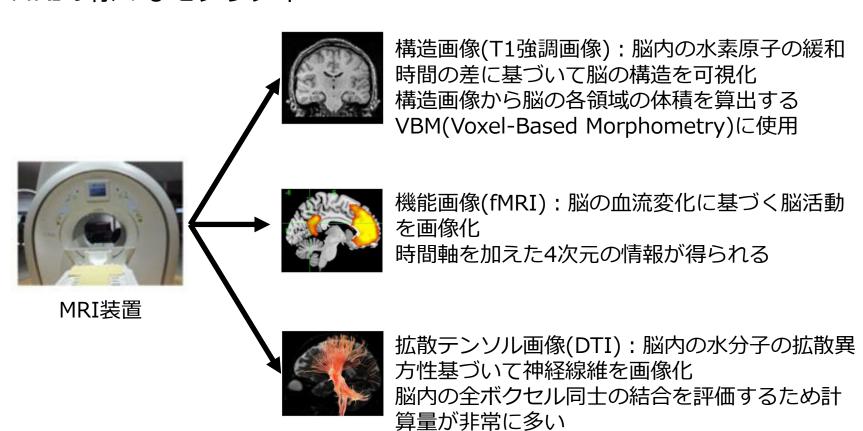
種類	目的	具体例	
臨床診断	症状の経緯の確認、他 の疾病との鑑別	問診	
神経心理学的検査	注意、遂行機能、記憶、 言語、視空間認知、行為、 社会的認知等の認知機 能の定量化	MMSE、HDS-R、MoCA-J、ACE-R、N-D test、COGNISTAT、ADAS-Jcog、SIB、etc.	
画像検査	他の疾患を除外、脳の萎縮の評価、血流、疾患原 因分子の可視化	MRI、SPECT、FDG-PET、 Amyloid-PET、Tau-PET、 MIBGシンチグラフィ、etc	

認知障害スペクトラム



MRIについて

MRIの様々なモダリティ



MRIによる認知症の診断

医師が目視により アルツハイマータイプの 萎縮パターンかどうかを判定

 既存ソフトウェア: VSRAD (Voxel-Based Specific Regional Analysis System for Alzheimer's Disease)
 海馬の萎縮のみを定量評価

- 問題点:
 - 1) 医師の熟練度に依存、基準が異なる
 - 2) 萎縮は海馬のみではない

機械学習とは?

多量・複雑なデータからパターンを抽出する技術

• 近年の人工知能(AI)で多く用いられるニューラルネッ

トワークも機械学習の一種 •平均法 クラスタリング 隠れマルコフモデル 教師なし学習 一般化線形モデル 入力データのみ 機械学習 回帰 •決定木 教師あり学習 分類 ・サポートベクターマシン 入力データ ・単純ベイズ 対応するラベル

機械学習による軽度認知症の層別化

- 脳の特定の領域のみを対象とした診断には限界があるが、 脳全体を定量評価することは人間には困難
- 機械学習により脳の萎縮パターンの特徴を自動で抽出
- サポートベクトルマシン(SVM)により分類モデルを作成

目的:

サポートベクトルマシン(SVM)を用いて、脳全体を計算対象として、認知症低下が進行するMCIと、進行しないMCIとを層別化するモデルを構築構築する

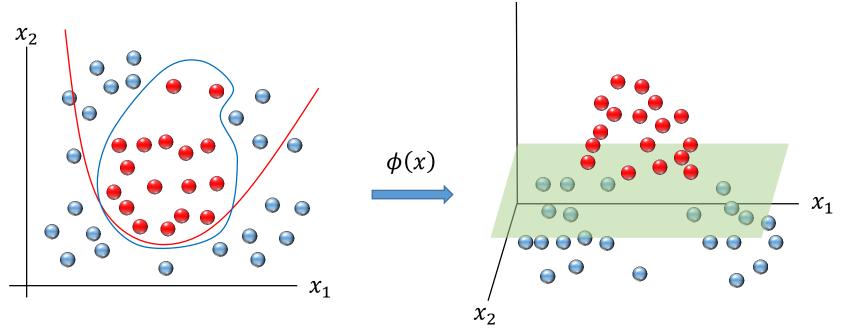
機械学習による軽度認知症の層別化

- 通常空間では分類困難なものを高次元空間で分離することが可能
- 交差検証を繰り返すことにより

 汎用性の高い判別アルゴリズムの作成が可能

ユークリッド空間 (ここでは2次元)

特徴空間(ここでは3次元)



MR画像の処理

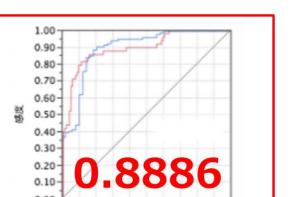
- 1) 取得したMRIのT1強調画像(スライス厚=1.0~1.2mm)を、滋賀医科大学椎野准教授らが開発したVBM支援ソフトウェアBAAD(Brain Anatomical Analysis using DARTEL)によってMR信号ムラの修正、個々人の脳の形態変換を実施
- 2) 変換後のMR信号強度を元に灰白質、白質、脳脊髄液に分離し、 AAL、Brodmann、LBPA40の3種の脳アトラスを用いて、 ROI(関心領域、脳の解剖学的部位)ごとに灰白質の体積を算出
- 3) 算出した灰白質体積を、健常者データベースと比較し、z値を算出
- 4) 算出されたROIごとの z 値を説明変数として、進行性MCIの分類器に投入



MCIを層別化

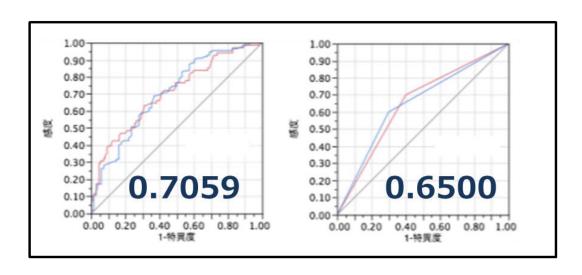
北米の症例を対象に、SVMによって進行性MCI(pMCI)と非進行性MCI(sMCI)とを層別化

Our Program



0.00 0.20 0.40 0.60 0.80 1.00

VSRAD



Sensitivity: 79.2% Specificity: 88.2% Accuracy: 85.4% Odds ratio: 28.3 Sensitivity: 51.5% Specificity: 74.5 Accuracy: 65.7% Odds ratio: 3.11 Sensitivity: 70.0% Specificity: 60.3% Accuracy: 64.0% Odds ratio: 3.5

PIB-PET

深層学習による認知症発症予測

- 深層学習を用いた研究が進展(Vieira et al., 2017)
 高精度でADとHCを分類し、90%前後の識別力を報告
 MCIがコンバートするかを最大83.3%で予測
 - → クラス分類問題のみを対象とし、ADへの進行タイミングを予測するモデルは検討されていない

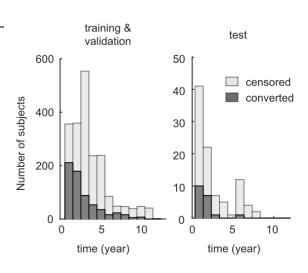
目的:

生存分析を深層学習に落とし込み、健常者・MCIがADへ遷移するタイミングを予測するモデルを構築する

解析対象

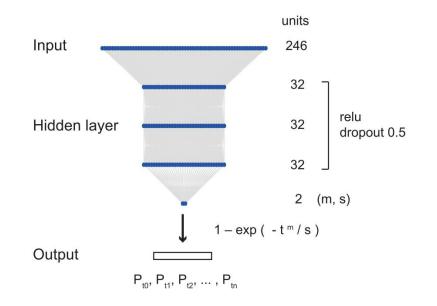
- 学習データ: 北米のADNI、豪州のAIBL、日本のJ-ADNIの健常及びMCI症例を対象
- テストデータ:島根大学で取得された健常及びMCI 症例を対象

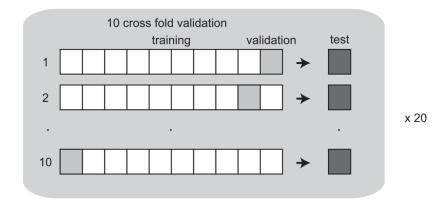
	Training & Validation			Test	
	ADNI	AIBL	JADNI	ALL	Shimane
N	1366	257	419	2042	94
MCI / NC	846 / 520	49 / 208	259 / 160	1154 / 888	56 / 38
Age MCI	72.9 ± 7.7	76.0 ± 7.0	72.9 ± 5.9	73.1 ± 7.4	76.6 ± 7.1
NC	74.9 ± 6.1	72.1 ± 6.9	67.9 ± 5.7	73.0 ± 6.7	70.3 ± 4.6
Sex (f/m, %)	44.9 / 55.1	50.2 / 49.8	50.1 / 49.9	46.6 / 53.4	55.3/44.7
MMSE MCI	27.5 ± 1.8	27.2 ± 2.1	26.4 ± 1.7	27.2 ± 1.8	25.8 ± 2.4
NC	29.1 ± 1.1	28.8 ± 1.2	29.2 ± 1.2	29.0 ± 1.1	29.0 ± 1.3
Conversion (n)	378	30	104	512	19
MCI / NC	352 / 26	25 / 5	104 / 0	481 / 31	19 / 0
Interval (mean, y)	3.9	3.8	2.5	3.6	2.3
(max, y)	11.8	5.7	3.2	11.8	8.0
MRI (1.5 / 3.0 T, %)	43.5 / 56.5	35.0 / 65.0	88.5 / 11.5	51.6 / 48.4	100.0 / 0.0



Deep survival analysis

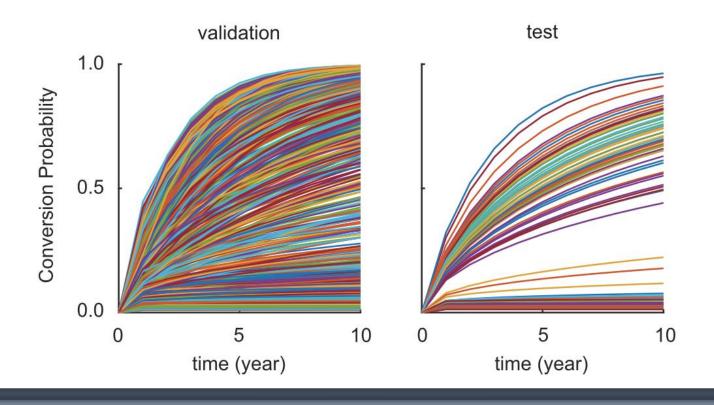
- ROIごとの灰白質体積を ニューラルネットワーク に入力し、ADの発症時期 及び発症確率を算出する 推論モデルを構築
- 10分割交差検証によって推論モデルの性能を評価





結果

- 深層学習によってWeibull関数のパラメーターを決 定
- MR画像からNCまたはMCI症例がADへ移行する時期と確率を曲線で表示、予測精度は約80%



ご静聴ありがとうございました!

Thank you very much for your attention!

